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Four regions of the complex mass-exchange model, the boundary cases of which are the Murphree
model in analysis of the efficiencies in the vapor and liquid phases, the Hausen model, and the hy-
pothetical model, are distinguished depending on the values of the distances h and h1. The limits of
variation of h and h1 are found in each region. The dependences of h and h1 on the activity coeffi-
cients of highly volatile and involatile components and the equilibrium constant are substantiated.

The relations for concurrent, countercurrent, and cross motion of the phases
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can be taken from [1–3].
Since under real conditions the ratio L/mV is positive, in formulas (1)–(3) at negative values of the

numerators the denominators must be higher than zero and conversely. Moreover, theoretically this ratio can
be equal to zero. The negative and zero numerators in (1)–(3) correspond to the conditions
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The latter expression holds for concurrent, countercurrent, and cross motion.
Since the complex model must be used in all three forms of organization of flows, of formulas (4)–

(6), condition (5) is the most general, i.e.,
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The positive numerators in (1)–(3) correspond to the conditions
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the most general of which has the form
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Dependences (7)–(10) are obtained for E < Em. In the case of the inverse ratio of the efficiencies,
from (1)–(3) at negative numerators and positive denominators we similarly obtain
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and at positive numerators and negative denominators we obtain
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Inequalities (7)–(14) refer to different regions of the complex model. Dependences (7) and (8) char-
acterize that part of the model where the distances h1 and h take on values within the ranges 0 ≤ h1 ≤ 0.5
and 1 ≥ h ≥ 0.5. The boundary case of this region is the Murphree model [4–6] in analysis of the efficiency
in the liquid, when h1 = 0 and h = 1. Relations (9) and (10) differ in the ranges 1 ≥ h1 ≥ 0.5 and 0.5 ≤ h
≤ 1. The limiting values are h1 = h = 1, which refer to the hypothetical mass-exchange model presented
earlier [7, 8]. Inequalities (11) and (12) refer to that part of the complex model where h1 and h are minimum
and in the limit are equal to zero, as is the case in the Hausen model [5, 6, 9]. Formulas (13) and (14)
characterize the sector of the complex model the boundary of which is the Murphree model [4–6] in analysis
of the efficiency in the vapor phase. Ordinary values of the distances in question are within the ranges 1 ≥
h1 ≥ 0.5 and 0 ≤ h ≤ 0.5.

Another limit of the mentioned regions of the complex model is given by the values h1 = h = 0.5
which take place in separation of ideal mixtures.

It is shown in [1–3] that the efficiency of mass exchange decreases with increase in the distances h1

and h. Inequalities (8) and (13) drop out of this regularity; in the first of these inequalities, low values of
h1 correspond to low efficiencies, while in the second inequality high values of h1 correspond to the high
values of E. These inequalities reflect the regions of the complex model where, in both variants, the boundary
cases are the Murphree model. The probability of existence of these regions is caused by the fact that in
many computational relations one uses the combination (hL/mV + h1), where a decrease in one distance is
compensated for with a decrease in the other, which, however, introduces certain errors into the results ob-
tained. Probably, due to the mentioned peculiarities some researchers treat the Murphree model critically and
prefer other models.

From (1)–(3) we can obtain the dependences of the distances h1 and h on the main parameters of the
complex model in concurrent, countercurrent, and cross motion of a vapor and a liquid:
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On substitution of the limiting value h = 1 into (15), the other distance will be determined by the
dependence
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Assuming that L/mV = 1, we can simplify the obtained expression:
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It is seen from (19) that the positive values of h1 are attainable when Econ,m > Econ and are impossible
when Econ > Econ,m. For the real values of h1 to be obtained, it is necessary to decrease L/mV in (18) or
simultaneously h and L/mV in (15).

If in formula (15) we set h1 = 1, as a result we have
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Substitution of L/mV = 1 simplifies dependence (20) to a form similar to (19):
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The positive values of h in formula (21) are also impossible when Econ > Econ,m. To eliminate this
situation, it is necessary, in contrast to (18), to increase L/mV in (20). The contradiction mentioned indicates
that the real values of one considered distance are attainable if the other is less than unity, irrespective of the
values of L/mV.

Setting alternately the values h = 1 and h1 = 1 in (16), we, correspondingly, obtain
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The first of the dependences derived shows the impossibility of the existence of positive values of h1 irre-
spective of the ratio L/mV and the ratio of the efficiencies Eg,m and Eg. Consequently, the real values of h1

are attainable at values of h knowingly less than unity. An analysis of expression (23) shows that the real
values of h depend on the ratio of the efficiencies and are impossible when Eg,m < 1. Therefore, the values
of h1 must also be less than unity. The indicated peculiarities are confirmed by Figs. 5 and 6 from [2], which
do not have real values of the efficiencies at h = 0.5 and h1 > 0.75, at h1 = 0.5 and h > 0.666, and at h =
h1 > 0.6 for L/mV = 1.5
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Substitution of h, h1, and L/mV that are equal to unity into (17) leads to formulas similar to (19) and
(21) with the only difference being that in cross motion of the vapor and the liquid the distances h1 and h
are half as large as in concurrent motion. Consequently, these distances can be positive under the conditions
specified for the concurrent flow.

Since subtraction of the quantity L/mV, which in countercurrent flow must be more than unity, from
the right-hand side of (16) leads to nonreal h1 and subtraction of a value which is slightly less than unity
leads to acceptable values of h, it is reasonable to decrease the quantity h by L/mV. This would broaden the
possibilities of the complex model with respect to the distance h but simultaneously bound h1 the limiting
value of which under this assumption cannot exceed mV/L. However, the mentioned peculiarities of the inter-
relationship between h and h1 are typical of only the countercurrent flow and are insignificant for the concur-
rent and cross motion of the phases. Moreover, it is seen from Fig. 5a and b [1, 2] and Fig. 4a and b [3] that
changes in h and h1 exert virtually the same effect on the ratio of the efficiencies E and Em. The slight
difference in the indicated pairs of graphs is caused by the factor L/mV at h, e.g., on the right-hand sides of
dependences (15)–(17). And finally, as follows from [10], at the same L/mV = 1.5 mixing of the liquid ex-
tends the range of possible changes in the quantities h and h1 which at ϕ = 0.5 varies from 0 to 0.8 compared
to their maximum values of 0.6 in the absence of mixing. Countercurrent motion without mixing virtually
does not occur. Therefore, for the regions of the complex model the limiting cases of which are the Hausen
model and the hypothetical model, we can take the equality of the distances h and h1.

Except for those mentioned, the values of h and h1 for the regions whose limiting cases are the
Hausen model and the hypothetical model must correspond to the following requirements:

(a) with increase in the activity of a highly volatile component, h must tend to zero, whereas with
decrease in it, it must tend to unity;

(b) with increase in the activity of an involatile component, h1 must tend to unity, whereas with de-
crease in it, it must tend to zero;

(c) in separation of mixtures approaching ideal ones, when the activity coefficients of both compo-
nents approach unity, h and h1 must be close to 0.5.

The conditions stated allow one to formulate the following dependence for determination of the dis-
tances h and h1:
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Instead of the activity coefficients, in (24) we can also use the partial pressures of the highly volatile
and involatile components. However, since both quantities are a rarity in the literature and data on the coef-
ficients of equilibrium are more readily available and have received wide recognition from practical applica-
tions, for determination of the distances h and h1 it is acceptable to use the expression

h = h1 = 
1

m + 1
 . (25)

Thus, with increase in the activity coefficient of the highly volatile component, decrease in the corre-
sponding quantity of the involatile component, and increase in the equilibrium constant the distances h and
h1 decrease and the complex model shifts toward the Hausen model [5, 6, 9]. As γin increases, γh and m
decrease and the complex model tends to the hypothetical model. If the activities of both components in-
crease or decrease simultaneously, then a comparative analysis of their activities is necessary. Depending on
the predominant effect of one of these components, the mass-exchange model can deviate toward either the
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Hausen model or the hypothetical model. Thus, depending on the activity of the components of the separated
mixture or the coefficient of equilibrium, we determine the mass-exchange model, which is individual for a
specific mixture but can also change from plate to plate for a given solution as the activity of its components
diverges from the initial values.

In the Murphree model, as the activity of the highly volatile component increases and that of the
involatile component decreases, h1 must tend to unity, and with the opposite tendency in the activities of the
components it must tend to zero, which leads to the dependence

h1 = 
γh

γh + γin
 = 

1

γin

γh
 + 1

(26)

or

h1 = 
m

m + 1
 . (27)

In analysis of the efficiency in the vapor and liquid phases, the distance h for this model is determined from
formulas (24) and (25).

NOTATION

E, efficiency of the plate; γh and γin, activity coefficients of the highly volatile and involatile compo-
nents of a real solution, respectively; ϕ, degree of mixing; h and h1, dimensionless distance from the site of
supply of the vapor and the liquid, respectively, to the surface where the concentrations of the phases on
ideal and real plates are equal; L, molar flow of the liquid; m, equilibrium constant; V, molar flow of the
vapor. Subscripts: g, counterflow; k, cross motion; m, values of the parameters at h = h1 = 0.5; con, concur-
rent flow.
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